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Abstract. We propose a position space renormalization group approach based on the Kad- 
anoff block method, for the calculation of an effective dielectric function of cermet-type 
films (30)  or island films (2D). These models have been applied to simulated lattices and to 
digitized transmission electron micrographs of ’ D  and 3D systems. The results account for 
both the resonant absorption and the optical crossover corresponding to the metal-to-non- 
metal transition. The effective dielectric function is in very good quantitative agreement 
with most of the experimental data, even near the percolation threshold where it is found to 
obey scaling laws with critical exponents very close to the theoretical values. 

1. Introduction 

The determination of the dielectric function of inhomogeneous media (cermet films or 
thin island films) is a very old unsolved problem, which is still of great interest. The 
history of the research on optical properties of inhomogeneous materials dates back to 
the beginning of the nineteenth century with the important work of Maxwell Garnett 
(MG) (1904, 1906) and Mie (1908). (For a historical overview of the various effective- 
medium theories, see Niklasson’s (1982) thesis.) The most important progress since 
these pioneering studies has been the introduction of the mean-field concept in the 
effective-medium theories of Bruggeman (1935); both the metal-to-non-metal transition 
(Berthier et a1 1987a, b) and the so-called dielectric anomaly or resonant absorption, 
characteristic of the metallic granular compounds, are qualitatively modelled. All these 
theories, aswellasmany others (e.g. thoseofPingSheng(l980) andCohenetal(1973)), 
are 3~ theories. The first attempt to model a 2D system seems to be also attributed to 
Bruggeman who introduced an effective parameter connected with the dimensionality 
of the system. However, the environment of the film (the substrate-film and film-air 
interfaces) is neglected and this approach cannot be considered as a 2~ theory. The 
interaction between the dipole particle and its mirror image and with all the dipole- 
dipole image couples was first introduced by Yamaguchi et a1 (1973,1974) and Yoshida 
etd(1971). At the same time, Bedeaux and Vlieger (1973,1974,1983) tookinto account 
the effect of the substrate by using surface dielectric coefficients. The above approaches 
require the filling factor to be small and cannot be used for phase transition modelling. 
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In these 2~ and 3~ theories, the morphology of the medium is taken into account roughly 
via the introduction of a unit cell describing schematically the relative situation of the 
constituents, their respective shape and volume fraction (Ping Sheng 1980, Berthier and 
Lafait 1986). However, it has been observed in many systems that the shape, size and 
orientation of the inclusions are highly correlated and depend on the concentration. It 
is clear that the morphology of the clusters, which is branched and often fractal around 
the electrical percolation (Laibowitz et a1 1982), is the main parameter of the problem 
and can never be reduced to a simple unit cell. 

To take into account the real structure of the inhomogeneous medium, we have 
proposed a 2~ and 3~ effective-medium theory based on a position space renormalization 
procedure (Berthier et a1 1987b, Berthier and Driss-Khodja 1989). These models use 
the Kadanoff (1966) block technique (see also Kadanoff eta1 1967) and were applied to 
randomly occupied square lattices generated by a computer. In this paper, we attempt 
to apply this procedure to real digitized transmission electron micrographs of 2~ and 3~ 
systems and to compare the results with the predictions of the other theories as well as 
with experimental results. 

In section 2, we briefly present the experimental techniques of deposition and 
characterization of the 2~ and 3~ films, with particular attention to the image treatment 
since this information is of great importance for the development of the renormalization 
process. Section 3 is devoted to a detailed description of the Kadanoff block method 
applied to the effective dielectric function calculation. This is independent of the dimen- 
sionality of the system. In sections 4 and 5 we present the applications of the above 
principle to 3~ and 2~ media, respectively. The well known MG formulation which 
appears in the calculation of the 3D effective dielectric function is briefly outlined together 
with its limitations. On the contrary, the recent and less currently used 2D approach of 
Yoshida et a1 and Yamaguchi et a1 and the modifications introduced for its application 
in the renormalization process is described at length. In both cases, we recall the 
main results obtained on computed simulated lattices (theoretical critical exponents for 
effective polarization and effective conduction). The process is then applied to real 3~ 
(Pt-AI,O,) and 2~ (Au island films) systems and the effective calculated dielectric 
function is compared with experimental results as well as with other theoretical pre- 
dictions (the theory of Yoshida et a1 and Yamaguchi et a1 for 2D systems, and the MG and 
Bruggeman theories for 3~ systems). 

2. Preparation and characterization of inhomogeneous films 

2.1. Preparation and characterization 

Pt-A1203 films (Berthier and Lafait 1982) were deposited onto optically polished glass 
by RF cosputtering. The target is composed of an A1203 disc with circular holes filled 
with platinum pellets. The composition of the film can be varied over a wide range 
according to the number of platinum pellets in use. The substrates are located on a 
rotating sample holder in order to homogenize the composition of the deposit and the 
film thickness. 

Thin gold granular films were deposited onto glass substrates at room temperature 
by thermal evaporation under an ultrahigh vacuum (Gadenne 1987). 

The thicknesses of the films were determined by x-ray interference under grazing 
incidence and the composition of the cermet deposit (metallic volume fraction q) was 
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determined by electron microprobe analysis. For granular films, the metal volume 
fraction q is extracted by an appropriate image treatment as described in section 2.4. 

2.2. Experimental determination of the percolation threshold 

The electrical percolation threshold of cermet films can be estimated from DC resistance 
measurements. We obtained qc = 0.43 * 0.02for the Pt-A1203filmsseries. In aprevious 
paper (Berthier et a1 1987a) we presented a determination of the critical concentration 
based on optical measurements. 

The value of qc obtained with this method for Pt-A1,03 thin films is 0.40 k 0.02. To 
within the resolution of the data, these two techniques are in relatively good agreement 
and do not allow one to distinguish the electrical from the optical percolation threshold. 
The effective resistivity of the Au granular films was deduced from the DC electrical 
resistance rD and the deposited mass corresponding to a mass thickness d ,  (Gadenne et 
a1 1988). Gadenne et a1 also presented an optical determination of the percolation 
threshold from optical absorption measurements, as described for the transmissivity of 
granular films by Yagi1 and Deutscher (1987). Following these observations the critical 
concentration qc of Au island films is about 0.61 * 0.01. 

2.3. Image treatment 

Considering the predominant role of the morphology of the films in their transport and 
optical properties, the image treatment is an essential step in our real-space renor- 
malization process; in addition, for any further statistical treatments and charac- 
terizations (concentration, cluster morphology, etc), exact knowledge of the 
morphology of the media is necessary. Beghdadi et a1 (1984) have developed optimum 
image processing for the morphological study of granular films. They presented the 
different steps from the transmission electron micrographs of the thin films up to a binary 
image of the digitized films. The sequence is as follows: 

(i) digitization of the micrograph; 
(ii) correction of non-homogeneous illumination effects; 
(iii) binarization and contrast enhancement. 

These steps will not be developed here but we paid much attention to the quality 
criteria used at each step of the process. As will be seen later, no free parameter 
is introduced into the renormalized effective-function model. Nevertheless, a fitting 
procedure of the volume fraction can be attempted by modifying the threshold in the 
binarization process, and the apparent volume fraction on the image can be varied over 
a few per cent. 

3. The renormalization process 

The principle of the method is the same as that introduced for spins in magnetic 
materials by Kadanoff (1966) (see also Wilson 1974); in a region small compared with the 
correlation length, the spins are grouped into blocks of n spins each, every spin having 
only two possible states (up or down). From a wider point of view, the group behaves 
like a single effective spin and the original lattice can be replaced by a larger lattice. The 
effective lattice is then renormalized to conserve the spin magnitude. At the end of the 



8654 K Driss-Khodja and S Berthier 

process, a macroscopic point of view is reached and macroscopic effective quantities can 
be determined. Following Kadanoff's idea, Bernasconi (1978) proposed a real-space 
renormalization approach to the conductivity of a bond-disordered conductance lattice. 
We present here a similar process for the dielectric function of an inhomogeneous 
medium. 

Let us start from a binarized transmission electron micrograph of a thin film. This 
micrograph is in fact the initial square lattice of the process (size E ;  generally E = 512), 
each pixel of the lattice having two possible states: black or white, i.e. metallic or 
dielectric. The pixels are then characterized by the respective dielectric functions of the 
components; generally E~ = constant for the dielectric. The dielectric function of the 
metal is either determined on thin films of pure metal prepared in the same deposition 
conditions as the inhomogeneous sample or characterized by the Drude expression using 
theoretical considerations: &,(U) = P - o i / o ( w  + i/z). The initial lattice is divided 
into blocks of four pixels each. Each block is then considered as a super-pixel whose 
effective dielectric function has to be determined using an effective-dielectric-function 
theory which depends on the dimensionality of the system. These theories will be 
detailed in the next section but it should be noted, at this point, that most of the 
theories could equally apply to more than two components. Nevertheless, from practical 
considerations, we limit the components to two. It is then obvious that in most cases the 
new super-blocks obtained after the first step are composed of four different constituents. 
Continuing with the effective-medium theories and unit-cell concepts implies new sim- 
plifying assumptions. The four components of any block at step II are reduced to two by 
an averaging process applied on the one hand to the metallic-like components and on 
the other hand to the dielectric-like components, according to 

E,  = qj&; 
j 

where j denotes the different components of each dielectric or metallic class; this 
averaging process is valid as long as the dielectric functions of both classes are not very 
different (Landau et a1 1969). At  any step, we then have two components: a dielectric 
component and a metallic component. Later, whatever the effective-medium theory 
used, it is necessary to decide for each block which component is the matrix and which 
is the inclusion. We retain the following conduction criterion: the matrix in the unit cell 
(dielectric function Pa) is the average component through which one can go from one 
side of the block to the other, following the field direction. For two sites connected by 
one corner, two different cases are to be considered (conducting or non-conducting 
convention). Each block can then be reduced to a unit cell with spherical or ellipsoidal 
inclusions (dielectric function E ' ) ,  To this end, a simple likeness criterion is used (figure 
1); a single site is schematized by a sphere with volume fraction q = 4, and two adjacent 
sites are schematized by aprolate ellipsoid, either parallel or perpendicular to the electric 
field, with a volume fraction q = 1 and an axis ratio c / a  = 2. In the parallel case, a size 
effect can be introduced by modifying the effective relaxation time z entering the Drude 
expression above, with r enhanced by a factor of 2. For two sites connected by one 
corner, the criterion is more arbitrary. It has been schematized by a sphere with volume 
fraction q = i. A more realistic model could be envisaged: a prolate ellipsoidal particle 
( c /a  = 2) at an angle of 45" to the field direction. The shape and orientation of the particle 
are introduced into the theories via the depolarization factor L,. In the direction of 
the electric field, L, is related to the axis ratio c /a  of the prolate ellipsoidal particle 
via the equation Lll = {[ln(l + e)]/(l - e )  - 2e}(l - e2)/2e3, L;  = (1 - L;l)/2 with 
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Figure 1. The different block configurations and the corresponding unit cells (dielectric is in 
white, and metal in black). In case 4,  two cells can be defined, whether the diagonal is 
conducting or  not. In this and the following figures the conducting and non-conducting 
conventions will be indicated by a large full square and a large open square. respectively. 

e = (1 - a2/c2)"* (Lamb et a1 1980) (L ,  = 4 for a spherical inclusion). For c/a = 2, L,, = 
0.2364 if the field is parallel to the main axis, and L ,  = 0.3818 in the perpendicular case. 
For non-parallel inclusions, the depolarization factor is a tensor with an eigenvalue in 
the field direction given by L" = Ll$,,/(Lll cos2 a + L ,  sin2 a)  (Berthier 1988); for 
c/a = 2 and (Y = 45", L" = 0.3045. 

We shall now apply this general principle to the 2D and 3D effective dielectric 
functions. In a first approach, a computer-simulated lattice 2D randomly occupied square 
is used for general considerations. Then the model is applied to digitized transmission 
electron micrographs for comparison with experimental results. 

4. Three-dimensional model 

The local effective dielectric function of each block at any step n has to be determined 
by the use of a theory which neglects interactions with the surrounding blocks; these 
interactions are taken into account in an implicit way by the renormalization process. 
The MG theory, as modified by Cohen eta1 (1973) for high metal concentrations, satisfies 
this criterion. The predictions of this theory are well known (Granqvist and Hunderi 
1978, Berthier 1986). As can be seen in the formulation, the asymmetric expression of 
the MG theory predicts a unique type of behaviour for the medium at all compositions: 
either metallic or dielectric according to the matrix nature. This assumption respects the 
conduction criterion in the renormalization process presented above but consequently 
the MG theory cannot account for a percolation transition. On the other hand, the MG 
theory predicts a sharp resonance in the effective dielectric function, corresponding to 
the vanishing of the denominator of the explicit expression of E,. In real systems, this 
resonance is attributed to the excitation of a collective mode of the conduction electrons 
at the metallic cluster surface (Clippe et a1 1976, Stroud 1979, Hui and Stroud 1986). It 
is worth noting that the very strong dielectric resonance inherent in the MG theory 
generally does not agree with experimental results. 
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Figure 2. Relative discrepancies between the final value E, computed for different initial 
lattice dimensions E ,  with the = 512 lattice result taken as reference. Similar results are 
obtained above percolation. 

Continuing with the renormalization process, we then propose the following trans- 
formation: 

E, = E;al(l + j q a ) / ( l  - kp) 

a = ( & h - ,  - &;:,)/[E;:l + Lh(Eh-1 - &,mal)] 

(2) 

(3) 

with 

where E:! is the dielectric function of the matrix of the block ( E ~  or E,, following the 
conduction criterion) at step n - 1, q the volume fraction of the inclusion (dielectric 
function E L -  and depolarization factor Lq) and a its polarizability. E, is thus the local 
effective dielectric function of the block at step n. This computation is repeated for each 
super-block of the lattice and the whole process is repeated until the effective medium 
has been reached, when E = 1 and E, + E,. It must be stressed that such a calculation of 
the local effective dielectric function is an approximation; at any step of the procedure, 
the dielectric function of the surrounding medium of the four-cell block is assumed to 
be the effective dielectric function of this block, while it is in fact composed of different 
other blocks. Nevertheless, this discrepancy between the real and the assumed sur- 
rounding medium tends towards zero as the process is converging. 

4.1. Percolation threshold 

The critical concentration qc which is a fixed point in the renormalization process can be 
determined by analysing the gradual change in the concentration of the renormalized 
lattice (Roussenq et a1 1976, Reynolds et a1 1978). Two values of qc are thus obtained 
depending on whether sites connected by two corners (along a diagonal) are considered 
as conducting or not: q c 3 D  = 0.378 k 0.005 in the conducting case and q c 3 D  = 
0.575 k 0.005 in the non-conducting case. 

4.2. Convergence 

To determine the convergence of the process, we compare the effective dielectric 
function computed for different initial lattice dimensions ( E  = 256,128 and 64) with the 
E = 512 lattice result taken as a reference (figure 2). The relative difference, as a function 
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Figure 3. (a)  Imaginary and ( b )  real parts of the dielectric function of Au-MgO 3D cermet 
films as calculated by the renormalization process for different Au volume fractions. 

of E ,  depends on the concentration q.  Far from the percolation threshold, the process 
rapidly converges. When the concentration and the correlation length increase, the 
convergence is slower and more iterations are necessary (more than lo),  their number 
tending to infinity at the critical point. In the following, the calculation begins with 
E = 512 (nine iterations) at any concentration, which corresponds to the size of the 
micrograph. This explains the relatively important uncertainties of the results (effective 
dielectric function and critical exponents). 

4.3.  Optical properties 

The dielectric functions of the initial dielectric and metallic sites correspond, respect- 
ively, toMgO ( E ~  = 2.6, = 0.05 = constant)andAu (sumofaninterbandcontribution 
(Berthier and Lafait 1986) and a Drude contribution: &(U)  = P - u;/u(u + i / t )  with 
parameter values P = 6.5, h o p  = 9.5 eV and h / z  = 0.6 eV (a size correction has been 
introduced by adding a corrective term to the inverse of the relaxation time according 
to l/t = l/to + uF/r ,  where zo is the bulk relaxation time, r the particle radius and u F  
the Fermi velocity; the value of h / z  corresponds to the average size of the inclusions in 
the real cermet and is assumed to be a constant whatever the concentration). 

An illustration of the results is given in figure 3 where we have plotted the real and 
imaginary part of the complex effective dielectric function E, as a function of the 
wavelength for various Au concentrations. These calculated curves exhibit the two 
main characteristic optical features of the cermet films: the gradual crossover between 
dielectric behaviour (ele = constant > 0, < 0, 

+ 0) occurs at around qc = 0.5; a dielectric anomaly or surface plasmon resonance is 
clearly observed in the visible range. These predictions are in qualitative agreement with 
all the experimental results on random systems (Granqvist and Hunderi 1978, Lamb et 
a1 1980) but they are strikingly different from those of the MG theory used at each step 
of the procedure, or even from those of the mean-field theory (the Bruggeman theory). 
As can be seen in figure 4,  the very strong dielectric resonance inherent in the MG or 
Bruggeman theories has a weaker amplitude and covers a larger spectral range, in better 
agreement with the experimental results (Berthier et a1 1987a). This is due to the 

weak) and metallic behaviour 
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Figure 4. Imaginary part of a Au-MgO granular 
film as predicted by the MG, Bruggeman and 3~ 

renormalization process 3D theories, and the 2~ 

theory of Yoshida et a1 and Yamaguchi et a1 
(YAMAG).  9 = 0.2. 

distribution of shapes and orientations of the inclusions which are explicitly taken into 
account in our model. (We should point out that the generalization of the MG theory to 
randomly oriented ellipsoids (Granqvist 1978) by averaging the polarizability a over the 
three principal axes of the ellipsoids does not produce the same effect; it has been shown 
(Lafait et af 1986) that this averaging process corresponds implicitly to the calculation 
of an effective depolarization factor. In most cases, the excursion of this factor is limited 
at around f, i.e. the random by oriented ellipsoids behave like a single sphere for which 
the MG theory predicts a very strong resonance.) 

The other important outcome of our theory is the description of the gradual crossover 
between the dielectric behaviour and the metallic behaviour around the percolation 
threshold. We have shown in a previous paper that an analytical expansion of an effective 
dielectric theory can be given in the framework of the scaling laws, as far as this theory 
predicts a phase transition (Lafait et af 1986). If the metal dielectric function follow the 
Drude law, where the dielectric resonance vanishes in the infrared, the cermet dielectric 
function can also be modelled by a Drude function: 

E ,  = P ,  - o~, , /w(w + i /r ,)  (4) 

where P,, ope and t, are effective wavelength-independent parameters. Below the 
percolation, the effective dielectric function reduces to a constant term E ,  = P,. The 
effective polarization P, can be related to the low-frequency dielectric function, while 
w;, , which is proportional to the effective number of free carriers, is related to the DC 
conductivity. These quantities should therefore exhibit a power-law dependence on 

i  q - qc I .  A reduced volume fraction q* can be introduced below and beyond qc: 

Using this reduced scale, P, and ope have been fitted to the scaling relations P, = Polq*i-s 
ando:, = A2q"'(figure5).Theaveragevaluesoftheexponentsofq* ares =0.75 k 0.05 
on either side of qc ( q  2 qc),  and t = 2.2 * 0.1 for q > qc. These fitted values are inde- 
pendent of the diagonal conditions of conduction. The uncertainties reflect the influences 
on s and t of variations in the choice of qc on the one hand and of the small size of the 
initial lattice for concentrations close to the percolation on the other hand. It is also 
interesting to note that P, obeys a power law over a large q* range (this is confirmed by 
experimental measurements on 3~ systems (Grannan et a f  1981)) while the power-law 
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quency wpe and polarization P, of a free-electron 
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Figure 6. Log-log plot of the experimental effec- 
tive polarization of Au-MgO and Pt-AI,O, cer- 
met films against the reduced concentration 4 * .  
s(Au-MgO) = 0.71 i- 0.04 and s(Pt-Al,O,) = 
0.69 t 0.05. 

variation range of the conduction is very limited. The values of s and t which we have 
found deserve a few comments. 

Theses and t values are in rather good agreement with the calculations on 3~ random 
systems (s = 0.73, t = 1.94) (Derrida et a1 1983) although we used a 2D lattice for the 
renormalization process. This result is not surprising. According to the random unit-cell 
concept, by the use of a 3~ theory for the calculation of the local effective dielectric 
function, one implicitly considers a 3~ medium with a volume structure identical to that 
described by the square lattice. A complete 3D renormalization calculation is at present 
beyond our possibilities and will probably be less instructive as the dimensionality is 
imposed by the local calculations. 

The improvement achieved by our model is well emphasized if one recalls that the 
MG theory predicts percolation at qc = 1 and that only the mean-field theories predict 
percolation at qc = L = 1, but always with critical exponents s and t equal to 1, in 
complete disagreement with the Monte Carlo simulations and the experimental results. 

4.4 .  Application to digital transmission electron micrographs 

We shall now apply this model to real systems, namely Pt-A1,03 cermet films. The 
optical properties of these films have been extensively studied in a previous paper 
(Berthier et a1 1987a, b). The morphology of real cermet films is very different from that 
of a randomly occupied lattice, but experimental measurements confirmed the power- 
law variation in P, below percolation. A log-log plot of the real part of the effective 
dielectric function as a function of q h  is given in figure 6 (for Au-MgO and Pt-A1,03 
films). The s exponents deduced from the slope of the two linear variations s(Pt- 
A1203) = 0.69 i. 0.05 and s(Au-MgO) = 0.71 k 0.05 are in good agreement with the 
numerical results obtained by the renormalization process. This agreement between the 
model and the experimental results is confirmed by fitting the optical dielectric functions. 
Figure 7 presents the binarized transmission electron micrographs of two Pt-Al,O, 
cermet films. In most cases, the concentration on the image is slightly different from the 
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Figure 7. Digitalized transmission electron micrographs of Pt-A1201 ccrmet films for Pt 
volume fractions 4 of ( a )  0.42 and (h) 0.53. 

Figure 8. (a )  Real and ( h )  imaginary parts of the effective dielectric function of Pt-A120, 
thin films (qcxp = 0.34 and 0.42) and fits using the renormalization process (qR = 0.31 and 
0.4, respectively). 

experimental value. As it can be seen in figures 8 and 9, the spectral variations in the 
effective dielectric function (figure 8) as well as in the experimental reflection and 
transmission coefficients (figure 9) are very accurately fitted by the model, even in the 
vicinity of the percolation threshold. 

Although there is no free parameter in the renormalization process, it is possible to 
attempt a fit by taking the threshold in the binarization process as an adjustable 
parameter. The concentration of the lattice is modified but the morphology is nearly 
unchanged. Furthermore, the two diagonal conduction criteria have to be tested. The 
results generally encompass the experimental values (figure lo). 

5. Two-dimensional model 

As already pointed out, the recent 2D theory presented by Yoshida er a f  (1971) and 
Yamaguchi er a f  (1973, 1974) accounts for the substrate effect by the mirror effect 
expedient. Furthermore, for a given inclusion, the contribution E" to the local field of 
all the couples dipole-mirror image dipole, assumed to be distributed onto lattice points 
of asquare array, appearsexplicitly in the formulation and can be neglected if necessary. 
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By introducing the local fieldE, = E' + E"in the classical Clausius-Mossotti equation 
which expresses the applied electric field as a function of the local field, we obtain for 
the anisotropic dielectric function of the island film 

( 5 )  
EIllEa - 1 = q[l/(Fll + g + i Ag)I 

1 - &,/El = q[l/(F, + g + i A d 1  
with 

'11 = Lll - (v2/24V3)[(&s - E a ) / ( & ,  f 'd)] - 0 .716[2~ , / (~ ,  ~a)](d, /2a)  
(6) 

F ,  = L ,  - (v2/24q3>[(&s - &,)/(E, + &,)I  - 0*716[2~s/(&s + &,)I(d,/a) 
and 

(7) 
g = Re[Ea/(Ei - 

' g  = ImlEd/(&I - 
L is the classical polarization factor, as defined previously, E, is the dielectric function 
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Figure 11. Effective dielectric function of a granular Au film against the wavelength, as 
calculated by the theory of Yoshida et a1 and Yamaguchi et a1 (component parallel to the 
surface): (a )  dielectric matrix; ( h )  metallic matrix. 9 is the volume concentration of metal. 

of the surrounding medium and q = l / h .  v is the axial ratio, h is the rotational axis and 
d,  is the average thickness or the weight thickness. 

We first consider the applied field parallel to the substrate for two configurations: a 
metal in a dielectric; a dielectric in a metal. The variations in ~ 1 1  as a function of the 
wavelength for various concentrations are presented in figure 11. The variations in E, as 
calculated by this approach are similar to those obtained by the MG theory for 3~ systems, 
i.e. a strong dielectric resonance in the visible range shifting towards long wavelengths 
when the metallic concentration increases and a critical concentration qc equal to 1. For 
high metal concentrations the formulation can be inverted in order to model a thin 
porous metallic film. The crossing from the metal-like to dielectric-like formulation is 
arbitrary and prohibits a study of the transition in terms of power-law dependences. 
In this formulation, the interactions are explicitly taken into account. As indicated 
previously, the interaction term can be neglected in the renormalization process. 
Equations ( 5 )  are unchanged but the last term in the expression for 41 or F ,  (equations 
(6)) is neglected. 

5.1. Renormalization process 

The local effective dielectric function at step n in a direction parallel or perpendicular 
to the substrate is given by 

where &Fal  and 
(8) E ,  = &,-I  ma + q&,mal/[F;i(L) + - &;al)] 

are the effective dielectric functions of the matrix and of the 
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Figure 12. Calculated ( a )  real and ( b )  imaginary parts of the dielectric function of Au-MgO 
2~ granular films against wavelength for different Auvolume fractions9 (diagonalconducting 
case B). 

-1 q* = (q - q&qc 0 q* = (q - qc)/(l ~ qc) I 

REDUCED VOLUME FRACTION 

Figure 13. Renormalized effective plasma frequency cope and polarization P, of island films 
deduced from a Drude fit of the calculated infrared dielectric function against the reduced 
filling factor. 

inclusion of any unit cell at step n - 1, which are either dielectric or metallic according 
to the conduction criterion as defined for the 3D model. Following the procedure estab- 
lished for the 3~ case, this new model of the optical dielectric function of ZD inhomo- 
geneous media has been tested on a random 512 X 512 square lattice simulated on a 
computer. The dielectric functions of the initial dielectric and metallic sites correspond 
to MgO and Au, with the same values as in the 3~ system. The results are presented in 
figure 12 in the diagonal conducting case for E I I .  The fluctuations observed in the effective 
dielectric functions for concentrations close to the percolation threshold ( q  = 0.4 and 
q = 0.5) are due to the very slow convergence of the renormalization process in this 
concentration range, The percolation threshold in these simulated 2D lattices is the same 
as that determined previously (qc = 0.378 in the conducting case and qc = 0.575 in the 
non-conducting case). On both sides of these critical concentrations, we have attempted 
to determine the polarization and conduction critical exponents for the parallel case 
(figure 13). The calculated values of P, diverge as P, = Po 1 q* I-' where Po is a constant 
prefactor very close to E?". The average value of s on both sides of qc is 

s = 1.35 I 0 . 0 3 5  (for q < q c ,  s = 1.335, for q > q c ,  s = 1.375). 

Above percolation, the effective plasma frequency varies as m i e  = A2q*' with t = 
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Figure 14. I>igitalii.cd t r i i i iw i i \ \ i o i i  clectron micrograph\ ot ,\U islaiid t i l i i i \  tor /\U volume 
fractions 9 0 1  0.27 (micrograph I ) .  0.57 (micrograph 2) .  0.59 (micrograph 3 )  and 0.66 
(micrograph 4).  

1.52 5 0.25 and A = 9.35 eV. The remarks about the uncertainties in s and t ,  as well as 
in the validity range of the power laws made in the 3~ case, are still valid. 

(i) The s- and t-values are independent of the diagonal conduction criterion. 
(ii) Ours  value is in very good agreement with the calculated value for a ZD random 

network: s = 1.35 (Kirpatrick 1973). 
(iii) P, obeys a power law over a large q* range. but in contrast with 3~ systems there 

is at present no experimental confirmation of this. 
(iv) The plasma frequency follows a power law over a narrow concentration range 

(qc < q < 0.43) and the t value is slightly different from the theoretical ZD estimates 
(Clerc er a1 1983): t = 1.35 2 0.1. It is obvious that our value has to be improved by 
applying our model to larger lattices. Nevertheless. the quoted uncertainties include 
most of the theoretical t values. 

5.2. Application to digitized transmission electron micrographs 

This model has been applied to real Au granular films. the optical properties of which 
have been determined by Gadenne (1987). The experimental determination of the 
effective dielectric function of ZD thin films proves to be rather difficult, especially for 
the real part, the influence of which on the values of the reflection coefficient R and 
transmission coefficient Tvanishes for concentrations close to the percolation threshold. 
A more accurate comparison between theoretical and experimental data can be carried 
out directly on R and T.  The calculations have been performed on a set of four Au 
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Table 1. Characteristics of the four Au granular thin films. 

Au granular Weight thickness Resistivity Au concentration 
film (nm) (pQ cm) (image treatment) 

1 1.42 > 108 0.27 
2 2.0 >lox 0.57 
3 2.3 368 0.59 
4 2.52 177 0.66 

granular thin films deposited onto float glass substrates (figure 14), the characteristics 
of which are presented in table 1. 

The critical concentration qc deduced from the evaluation of the E >  against A slopes 
in the infrared region is qc = 0.58 t 0.01. The morphology of these films is presented in 
the micrographs in figure 14. These micrographs, after the binarization process, rep- 
resent the starting point of the renormalization procedure. The calculated effective 
dielectric functions are presented in figure 15. For comparison with the experimental R 
and Tmeasurements, the effective thickness of the films has to be known with precision. 
This is not an easy task because the real morphology of the Au grains in the direction 
perpendicular to the films cannot be observed. Nevertheless, this effective thickness can 
be approximated by E = E,/q, where E,  is the mass thickness, supposed to be known 
with a good precision. In the results presented below, the effective thickness has been 
introduced as a free parameter. 

The calculated optical transmissivity and reflectivity spectra of Au granular films 
are plotted in figure 16 for four different Au concentrations, close to the percolation 
threshold. The value of z used in the calculations is f i / t  = 0.62 eV, which corresponds 
to a particle size of 75 A. 

It can be seen that the present approach reproduces all the characteristic features of 
the experimental data. There is only quantitative disagreement in the resonance region, 
especially for the transmission spectra. Better agreement can be obtained by modifying 
the theoretical film thickness, but the dielectric anomaly is always underestimated. 
Tentative fits to the absorption band with t as a free parameter have been carried out. 

I O  I I , I I 

O C  t 

-5u 1 
-Kc’ t 

:: i o  E 
40  t 

0.5 1 1.5 2 

W A V F I . R N G T I 1  ( 11 m) 

Figure 15. Dielectric function of Au island films by thezr, renormalization process for various 
Au concentrations. 
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Figure 16. Measured reflectivity and 
transmissivity of Au island films near the 
percolation threshold (---) compared 
with the renormalization results (-): 
curves 1, q=O.27; curves 2 ,  q =0.57; 
curves 3 ,  q = 0.59; curves 4, q = 0.66. 

0.5 I 1.5 2 2.5 

WAVELENGTII ( U m )  

The agreement is better but the r values are quite different from the observed diameters 
of the clusters. On the other hand, it has been noticed that the absorption is well fitted 
by the renormalization approach if the matrix dielectric function is enhanced (P" = 2 
instead of 1). The important absorption and dielectric anomaly observed in these 
materials could then be explained by the presence of very small gold crystallites between 
the clusters (Gadenne 1976, Gadenne et a1 1989). 

6. Conclusion 

We propose a position space renormalization group approach based on the Kadanoff 
block method, to calculate the effective dielectric function of cermet-type ( 3 ~ )  or island 
films (2D). These two models use the same rules. The only difference lies in the use of a 
2D (Yoshida et a1 and Yamaguchi et al) or 3~ (MG) effective-dielectric-function theory in 
the evaluation of the locai dielectric function. In both cases, the model predicts the 
dielectric resonance in the visible range with a fairly correct amplitude and position. The 
effective dielectric function is found to obey scaling laws with critical exponents s~~ = 
0.75 and S2D = 1.35 for the polarization term, and t3D = 2.2 and tzD = 1.52 for optical 
conduction. The prediction of the critical exponents s is quite accurate and in good 
agreement with the experimental and theoretical values. The values of the conduction 
critical exponents t are slightly larger than theoretical estimates. We believe that this 
systematic overevaluation is due to the narrow concentration range of validity of the 
power law and to the very slow convergence of the process in this range. (We are at 
present limited to 512 X 512 initial lattices, i.e. to nine successive renormalizations.) 

These models have also been applied to digitized transmission electron micrographs 
of 2D (Au granular films) and 3~ (Pt-Al,O, cermet films) systems. In both cases, the 
agreement of the models with experimental results is confirmed by the fitting of the 
optical dielectric function or the experimental R and Tspectra, even near the percolation 
threshold, This confirms the essential underlying role of the microstructure in the optical 
properties of composite systems. 

Considering the large number of 3~ theories for the effective-dielectric-function 
calculation, a critical comparison can be carried out with our model. We essentially 
discuss the predictions of the theories mainly employed: the MG theory (used in our 
model for the calculation of the local dielectric function of each block) and the 
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Bruggeman mean-field theory. Comparison with the recent approach of Ping Sheng can 
be found in the work of Driss-Khodja (1989). It is evident that the MG theory cannot 
correctly account for the experimental results, because of its fundamental asymmetry. 
The Bruggeman mean-field theory, which describes a medium where each component 
exhibits the same shape, seems to be better suited to the structure of our medium, but 
the fittedvalues of q (the metallic filling factor) are quite different from the experimental 
q values and the values of L lead to unrealistic shape parameters. 

Considering the formal similarity of the MG theory and the 2D approach of Yoshida 
et a1 and Yamaguchi et al ,  it is impossible to look for a valuable comparison with our 2~ 
prediction. The renormalization model is-to our knowledge-the only 2~ approach 
predicting an optical crossover. Comparison with few experimental results confirms the 
self-consistency of this theory. 

Our model is the first attempt to introduce the renormalization concept in the 
effective-dielectric-function calculation, but the actual results look particularly hopeful. 
We plan a few minor modifications to improve the theory. To remove the ambiguity 
arising from the ‘conducting-non-conducting convention’, two different approaches can 
be explored: a statistical repartition of the conducting and non-conducting blocks, or 
the use of uneven block lattices (n  = 3 is the simplest). In particular, for the 2~ problem, 
we also envisage different effective interactions between the neighbouring blocks. 
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